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1. Introduction.

S. S. Yang (1977) proposed as an estimation of the regression function

m(u) = E(Y|X = u] of a bivariate random vector (X,Y) the statistic Mn defined
by

M (u) = (ne.)! ? K[ fff:fgffl_] Y

n L €n [i:n]
Here {cglk(xlen)} is a 8-function sequence of kernel type (Watson and Leadbetter
(1964)) (xi,Yi), i=1,...,n are i.i.d. observations
on (X,Y), Fn is the empirical distribution function (EDF) of the X-observations,
and Y[i:n] is the Y-observation corresponding to the i-th order statistic of the
X-observations, i.e., the i-th concomitant of the X-values n (see, e.g., Yong

(1977)).

Our purpose here is to find conditions under which

_,,]
n
-X

bE ssan+ ©, where [ is a random variable with density . = ,» X >0,

¥ (nen)% M (u) - m(u)]
(1.1) (nen log n) sup

asu<b

b

(s [ K2(t)de)?

a, b, are constants, {en} and {dn} are appropriate real sequences and

Wi :
s(u) = E[Y"|X = a). Bickel and Rosenblatt (1973) proved a similar result
for kernel estimates of a density function. A large sample confidence inter-

val for m(u), based on Mn(u) is given, using (1.1).

We also give conditions under which

L ACCESSIONfor 1

1.2 ¥ 5 2 NTIS White Sectlon

a2 (ne )” (M (u) - m(u)] + N(O, s(u) { k“(t)dt) as n+ = e i
{NANNOUNCED O
JUSTIICATION

for appropriate points u and sequence {En}.
BY et

Our method of proof is to show that | DISTRIBUTION/AVAILABILITY CODES

{iist.  AVAIL. and/or_SPECIAL

(1.3) (nen log n)s sup IM“(u) F M;* (U)I ﬂ 0, 1
asus<b t

{
—




where M;* is defined by
n
-1
* - 4 > - B
(1.4) M**(u) = (ng ) izl\ix((rmi) F(w)/e ).
M;* is a special case of the regression function estimation proposed by
Watson (1964). Johnston (1979) gives conditions under which (1.1) and (1.2)
hold for M;' in place of M“. and (1.1) and (1.2) will thus hold by virtue of
€L.3).

2. Asymptotic Equivalence of M" and M;*.

In this section we verify (1.3). The proof is given in the Appendix
since it is rather technical and lengthy. Define
-ln
2 i C((F = !
MY (u) - () iél Y KOF (X)) - F(u)/€)

Then Lemma 2.1 gives conditions under which

4 >
(2.1) (ne_ log n)” sup |M* (u) - M_(u)| %o
n n n .
asuz=b
1,
(2.2) (ne. log n)* sup [M**(u) - M* ()| % 0,
n e n
a-u-h
which together imply (1.3).
Lemma 2.1  Suppose {e;l K(x/¢ )} is a 6-function sequence such that

1

(ne é) » © K has bounded support and 3 bounded continuous deri-

(log n) ~

vatives on the support. Suppose [ |K'"(t)|dt < ® and K and K' are of bounded
variation.

Let (X,Y) be such that E|Y| < ®, g(u) = E[Y|X = F" ' (u)] has 2 bounded deri-
varives on [0,1] and h(u) = E|(Y)]X = F-‘(u)] is bounded on [0,1].

Assume there exists a real sequence {an} such that B ™%

2 3
ay loy, n/(n("\ » 0 and

n’ / |y|dFY(y) >0asn o
Iyl >a




_i: &s—-—-—-—-—'——»‘ v - e
page 3
1
3 Then, for 0 < F(a) < F(b) < 1, (2.1) and (2.2) hold. 0
i
l ! 3. Applications.
% j We will assume throughout this section that the assumptions of Theorem 2.1

arc in force. We first note that M;* may be written as

0 n
M;*(u) = e -Z

1 Yix((zi-r(u))/en)

1

b where

Zi = F(Xi) ~ o, r)y.

According to Theorem 2.5.2 of Johnston (1979), under certain conditions,

L L 5 ”
(e )7 [ME(u) - E(Y][Z = FQu))] > N0, E(YT|Z = F(u)) [ K“(t)dt).

If we assume F to be strictly increasing, then
E(Y|Z = F(u)) = m(u)
and

u(vzlz = Flul) = s(u).

Thus we have, by virtue of (1.3)
i
(nL") |M"(u) - m(u) |

& N(0, s(u) f Kz(t)dt),
which completes the proof of normality of M, We note that this asymptotic
variance differs from that of Yong (1977), Theorem 6.

If the conditions of Corollary 3.2.9 of Johnston (1979) hold, then

b ;
1 M** B
(3.1 (28 log n)i o (ne )7 [Mp*(u) - m(u)] 53 L

acuh [s(w)f K?(t)dt]*




i where E is a random variable with density e_ze-x, x > 0, Here en = n-G,

Ei é 26 < % and d“ is the sequence of entering constants specified in Bickel

g and Rosenblatt (1973). By virtue of (1.3), (3.1) holds with Mn replacing

A: M;', as we wished to prove. Inverting (3.1) in the usual way yields an

%; approximate (1-a) <« 100% confidence band for m(u) over the interval (a,b),
’-;; based on Mn(u):

-4 2 3 c(a)
M (u) ¢ (ne_) “fs(u) [ K°(t)de}” |d +» —221
y 3 : [ﬁ" (268 log n)é]

k- where

c(a) = log 2 - log|log (1-a)].

= =




APPENDTX

Proof of Lemma 2.1.

We begin with the following preliminary lemma, which is very similar to

Lemma 1 of Bhattacharyya (1967).

Al. Lemma Assume that g{u) = E[Y|X = F_l(u)] has r continuous derivatives
on [0,1], r > 0, and that K has bounded support and r bounded derivatives on

the support. ‘Then for a, b such that 0 < F(a) < F(b) < 1,

Y D o - v@)/e R | = 0y

uniformly in z ¢[a,b] as n » ©

Proof. Note that

f;l(r"l) II yK(r)(“(x) - |(Z))/Cn) L”"(x,)’)

= E;(r’l) EYK(r)((F(X) - F(z2))/e))

Lo [ ek (e - B /e dreo
n

|
X }-(r*l) f g(u)K(r)((u—F(z))/c ) du.
=47 0 L

Now write

f"l(rﬂ)g(“)x(r)((u_l:(z) '/"n)

r;l g(r)(u)K((u-F(z))/n")

r-1 : iy ;
gﬁ y c;(h*l)g(r-h l)(")K(h)(("_F(Z))/En)‘
s$=0

1
- " F) e
sup n"(r’l) 5 gk ((u-F(2))/e ) du
z

1
sup c;l / g(r)(u)K((u—F(z))/L“) dul
2 0




1

r-1 2 e
) c-(.wl)g(r s 1)(u)x(s)((u-F(z))/€ )
Ms-n 7 :

+ sup
Z
—u=0

The second term above is zero for large n since the argument of K(s) is

eventually outside the support of K. Write

sup
z

()
ey [ 87 (WK((u-F(2))/e ) du
0

(1-¥@)/,

= sup
z

K(v)g(r)(cnv#F(z)) dv
-F(Z)/c“ :

< sup |g(r)(t)| f lK(v)| dv < = |
t

We now proceed with the proof of Lemma 2.1. It is convenient to rewrite

ML) = e vk (0 - F )/ ) dF, (xy),

and similarly for M; and M;*. Thus, letting Z“(x,y) = Fn(x,y) - F(x,y), we
may write

M;(u) - Mn(u)

g [ ¢ F_(x)-F(u) F (x)-F_(u) y |
= ¢ iy K[ —“—-—~——] - K[ ———-—1——] 4z, (x,)
L “n “n i3
g [ F(x)-F(u) B(x)F ) § ]
o et ff y|k| A ] - K[-Jl——- 0 ] dF (x,y)
i “n “n |

%
= .1l + .0, say. We first show (nc“log n)* |J2| 5 0. Since, by assumption,
K has 3 continuous derivatives, we may write (by expanding K((F (x) - Fn(u))/cn)

about (F (x) - F(u))/e )

Fn(x)-F(u)

Jy = e;‘ (F,(u) - Fu)| [f yK' [ ] dF(x,y)

n

Fn(x)-F(u)
~-] dF(x,y)

* 5;3 [F () - F)? ff yke [
n




Fn(x)* w‘tu)

v e [ ) - B ff ke [ ““"‘7?’”L"} s
n

= ng) + ng) + J§3) , say, where wn(u) is between Fn(u) and F(u).

Fn(x) - F(u)
Now, expanding K' [ ey o } about (F(x) - F(u))/en yields
n
(A1) (ne, log ny® s lJélll

& vl :
< (nenlog n) €, sxp IFn(u) - F(u) |

AL e (50 ) )

n

Fn(x) - F(x)

¢ fF e iy { 515125—33311 J dF(x.y)I

£
n n

S e

€
n n

“Fn(x) - F(x) v_(x,a)
yK"'[ ] dF(x,y)l }

where vn(x,u) is between Fn(x) - F(u) and F(x) - F(u).

Using the fact that sup IF"(u) - F)| = Op(n’%) and applying Lemma Al implies
u
that the first term on the RIS of inequality Al goes to zero. For the second

term, note that

c;l /f lyK" [ Ei}li:nfiﬂl>] I dF (x,y)

n

1

) -

= e g h(t) |k { E-EliﬂlJ l dt
n

(1-F(u))/«
y (lfj) ) [+ FW) dv,

-F(u)/e

which is a bounded sequence since h is bounded and K" has bounded supports.

page 7




Thus the sccond term on the RIS of (Al) is equal to

(nen log n)$ E;Z Op(n-l) 0(1), which converges to zero in probability if

(nen log n)%/neﬁ + 0, i.e., if (nsz)(log n)’l -+ o, which is true by assumption.

For the third term on the RHS of (Al) note

v (x,u)

I |yK|l| [ic ] I dF(x,y)

n

< sup IK"'(V)IE]YI < oo,
v

5 oo -
Thus the third term is a (nc" log n)* En4 Op(n 3/‘2) sequence, and converges

to zero in probability since (log 5y nez/z + @, Similar arguments apply

to J;Z) and Jés), and we have shown (nen log n]g sup [J2| s 0.
We now turn to Jl' Let {u“} be a sequence as specified in the hypotheses

and write

-1 .
dy = [ [ y6 (x,u)Z (dx,dy)
Iyl>a,

-1 y
fep L y6, oz, axdy)
lyl=a,

a .,(l) 5 Jl(Z)

I , say, wherc, for convenience, we write

F (x) - F(u) F (x) - F_(u)
o+ BT e

€

n n

Using integration by parts, write

g oy

ilen 3 8 [ 2,(x,y) dyG, (dx,u)
“n
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a

gy
+ it: £ £ G, (t,u) yZ, (t,dy)
n

a
n

; =] '
- lim e f Gn(t,u) yZ, (t,dy)

-0 -a
tr n

3] ]

rea ) 2, (x,a ) G (dx,u)
e la | Z_(x,-a) G_(dx,u)
m n n"’ "n’ n 3

[l + 12 +13 + l4 + IS’ say.

Since Zn(-m,y) = 0 for cach n and y, it is casily ascertained that I3 = 0 for

each n (e.g. Natanson (1964), p 233). Similarly,

a

n
SR =1
(u) = lim bn(t,u) €n [ den(y)

v

>0 -
t ﬂn

2

; % 7
e Z = F =B v
QU= UE L6 S £ W - F 00

a
n

n
-y -] = : -l
[ yaz, (y) -Z,{Yi'l-ﬂn-anl(vi) LYI[_an,an](Y)}= 0 (n )

-a =
n

as n » » by standard central limit theorem
arguments.  Parther, using the mean valuce theorem,

. 1 - Fn(u)
lim (‘-“(t,u) = K[ [ ——————————]

t oo “n

Fn(u) - F(u)

uniformly in u, where qn(u) is between Fn(u) and F(u).




Thus we have

i
(ne, log n)° S:p [IZ(u)I = (ne log

A 3
since nen/log n o> o,

For 14, note that

f -
§ i (xa0) b"(dx,n)l

< sup |Zn(x,an)| VG, oy W],
X

Where V| | dcnotes total variation over R. Now

%
sup |2, (x,a)] = 0,07
X

and it is easily verified, using the mean value theorem, that

Lo (n'$)

V(Gn(. , u)] = es %

uniformly in u. Thus

(ne log n)% s:p |'4(“)|

.
&
7

1
5
:

. b -2
= an(nenlog n) £, P

since ai log n/nL; » 0 by assumption. A similar argument applies to show

] P
(me_log n)* sup IIS(u)I > 0.
u

For Il’ note that

W R R dyGn(dx,u)l
lyl-a,

< sup Izn(x,y)lvlyﬁn(x.U)l‘
X,y




where V denotes here the total variation in (x,y) over R x [-an, an]. As

before,

sup |2 (x,y)] = 0 (,,'!5)

= p n ,Y p

»
and

VIyG (x,u)] = 4 C'l 0 -5 o

| p e p(" ) uniformly in u.

Thus

(ne, log m” sup ]ll(u)l
u

e g -1, P
= ae (na“log n) Op(n ) >0

: 2 3 :
since a log n/ncn > 0 by assumption.

As the final step in the proof, we must verify that (ncnlog n)&

13
sup |J;l}| L 0. Note that
u

(A2) enlJ}')l < ]'y{wq [ y6 0w (x,y)|
a

1 y6 G dF ()],
lyi>a,,

For the first term, note

| f f yG (x,u) dF"(x,y)l
>, n
Iy a4

Y
< sup IG"(x,u)I Il dr ().
X,u y|>a,

As before,

- -¥
sup IG“(x,u)l = cnl Op(n “Js
X,u

e A e,

page 11
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n
Y -1
bodrl e o sn ] N )T ay; b .
lyl>a y T L

Now, by the Markov inequality, for any ¢ > 0

P{W [ vl el ;] > e}

>a
ly1>a,

seVEVR S Iylar) o]
Iyl>nn

mlyl ar¥ ) v 0

Iy1>a,

by assumption, and thus

ey g e bl A TR ’ Z
3 " A TR

Vipn
[ Iyl dFp () = 0,@07%).

>
lyl>a,

A similar argument applics to the second integral on the RHS of (A2) and we

thus have
L
(ne_log n)? sup IJ(l)(u)|
n i 1
§ -2 -1, P
(ncnlog n) €, Op(n ) >0
b S > 3 :
. since ne /log n » « by assumption. a

The proof of (2.2) follows a similar pattern, and we omit the details.
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